Detection capacity, information gaps and the design of surveillance programs for invasive forest pests Article uri icon

Overview

abstract

  • Integrated pest risk maps and their underlying assessments provide broad guidance for establishing surveillance programs for invasive species, but they rarely account for knowledge gaps regarding the pest of interest or how these can be reduced. In this study we demonstrate how the somewhat competing notions of robustness to uncertainty and potential knowledge gains could be used in prioritizing largescale surveillance activities. We illustrate this approach with the example of an invasive pest recently detected in North America, Sirex noctilio Fabricius. First, we formulate existing knowledge about the pest into a stochastic model and use the model to estimate the expected utility of surveillance efforts across the landscape. The expected utility accounts for the distribution, abundance and susceptibility of the host resource as well as the value of timely S. noctilio detections. Next, we make use of the info-gap decision theory framework to explore two alternative pest surveillance strategies. The first strategy aims for timely, certain detections and attempts to maximize the robustness to uncertainty about S. noctilio behavior; the second strategy aims to maximize the potential knowledge gain about the pest via unanticipated (i.e., opportune) detections. The results include a set of spatial outputs for each strategy that can be used independently to prioritize surveillance efforts. However, we demonstrate an alternative approach in which these outputs are combined via the Pareto ranking technique into a single priority map that outlines the survey regions with the best trade-offs between both surveillance strategies.

Time

date/time value

  • 2010

Additional Document Info

number of pages

  • 12

volume

  • 91

issue

  • 12